Sierocy receptor jądrowy RORgammat kieruje programem różnicowania prozapalnych komórek pomocniczych IL-17 + T.
IL-17-producing T lymphocytes have been lately proven to comprise a definite lineage of proinflammatory T helper cells, termed Th17 cells, which are main contributors to autoimmune illness. We present right here that the orphan nuclear receptor RORgammat is the important thing transcription issue that orchestrates the differentiation of this effector cell lineage. RORgammat induces transcription of the genes encoding IL-17 and the associated cytokine IL-17F in naïve CD4(+) T helper cells and is required for his or her expression in response to IL-6 and TGF-beta, the cytokines recognized to induce IL-17.
Th17 cells are constitutively current all through the intestinal lamina propria, specific RORgammat, and are absent in mice poor for RORgammat or IL-6. Mice with RORgammat-deficient T cells have attenuated autoimmune illness and lack tissue-infiltrating Th17 cells. Collectively, these research recommend that RORgammat is a key regulator of immune homeostasis and spotlight its potential as a therapeutic goal in inflammatory ailments.
Description: The TCR Knockout Jurkat cell line was generated by CRISPR/Cas9 genome editing to remove the TRAC (T-Cell Receptor Alpha Constant) and TRBC1 (T-Cell Receptor Beta Constant 1) domains of the TCRα and β chains.
Description: This cell line is a double knockout of TCR (T Cell Receptor) and B2M (Beta-2-Microglobulin). First, the TRAC (T-Cell Receptor Alpha Constant) and the TRBC1 (T-Cell Receptor Beta Constant 1) domains of the TCRα/β chains were genetically removed by CRISPR/Cas9 genome editing from Jurkat cells to generate the TCR Knockout Jurkat cell Line (BPS Bioscience #78539). These TCR knockout cells were then used to generate a new cell line in which B2M was also genetically removed by CRISPR/Cas9 genome editing.
Description: The 293AD Cell Line is derived from the parental 293 cells but selected for attributes that increase adenovirus production, including firmer attachment and larger surface area.
Description: The 293AAV Cell Line is derived from the parental 293 cells but selected for attributes that increase AAV production, including firmer attachment and larger surface area.
Description: The 293LTV Cell Line is derived from the parental 293 cells but selected for attributes that increase lentiviral production, including fimrer attachment and larger surface area.
Description: The 293RTV Cell Line is derived from the parental 293 cells but selected for attributes that increase retroviral production, including fimrer attachment and larger surface area.
Description: The FCGR2A Knockout Jurkat cell line was generated by CRISPR/Cas9 genome editing to remove FCGR2A (CD32A), the gene encoding protein FcγRIIa (Fragment crystallizable gamma receptor II a, also known as FcGRIIa, Fc-gamma-RIIa, and CD32A).
Description: This cell lysate is prepared from human 293T using Boster's RIPA Lysis Buffer (AR0105) using a standard whole cell lysate protocol. The concentration was determined using the BCA assay process and then diluted using Dithiothreitol (DTT) and a reducing SDS sample loading buffer, heated for 5 minutes at 100˚C.
Description: Both B2M (Beta-2-Microglobulin) and CIITA (Class II Transactivator) have been genetically removed from THP-1 cells using CRISPR/Cas9 genome editing.
Description: B2M (Beta-2-Microglobulin) has been genetically removed by CRISPR/Cas9 genome editing from NFAT Luciferase Reporter Jurkat cells. Expression of the firefly luciferase gene is driven by NFAT response elements located upstream of the minimal TATA promoter. Activation of the NFAT signaling pathway in these cells can be monitored by measuring luciferase activity.
TCR Knockout NFAT-Luciferase Reporter Jurkat Cell Line
Description: This cell line is a knockout of TCR (T Cell Receptor). The TRAC (T-Cell Receptor Alpha Constant) and TRBC1 (T-Cell Receptor Beta Constant 1) domains of the TCRα/β chains were genetically removed by CRISPR/Cas9 genome editing from recombinant Jurkat cells stably expressing the firefly luciferase gene under the control of NFAT response elements.This cell line has been functionally validated and does not respond to anti-CD3 agonist antibodies, as opposed to parental NFAT-Luciferase Reporter Jurkat cells (BPS Bioscience #60621).
Description: This cell line is a double knockout of TCR (T Cell Receptor) and B2M (Beta-2-Microglobulin). First, the TRAC (T-Cell Receptor Alpha Constant) and the TRBC1 (T-Cell Receptor Beta Constant 1) domains of the TCRα/β chains were genetically removed by CRISPR/Cas9 genome editing from NFAT Luciferase Reporter Jurkat cells to generate the TCR Knockout NFAT Luciferase Reporter Jurkat cell Line (BPS Bioscience #78556). These TCR knockout cells were used to generate a new cell line in which B2M was also genetically removed by CRISPR/Cas9 genome editing. _x000D_Expression of the firefly luciferase gene is driven by NFAT response elements located upstream of the minimal TATA promoter. Activation of the NFAT signaling pathway in these cells can be monitored by measuring luciferase activity.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-E cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-GP cells contain the gag and pol genes required for retroviral packaging; an expression vector is co-transfected with a VSVG envelope vector.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-A cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.
Total Protein - Murine Embryonic Stem Cell Line D3
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: Our StemTAG 96-Well Stem Cell Colony Formation Assay provides a high-throughput method to quantify ES cells in just 7-10 days, and no manual cell counting is required. Once colonies are formed, they may be analyzed in three different ways: 1. Lyse cells, then quantify in a fluorescence plate reader using dye included in the kit; 2. Lyse cells, then quantify alkaline phosphatase activity using reagents provided; or 3. Recover colonies from matrix for further culture or analysis.
Description: Our StemTAG 96-Well Stem Cell Colony Formation Assay provides a high-throughput method to quantify ES cells in just 7-10 days, and no manual cell counting is required. Once colonies are formed, they may be analyzed in three different ways: 1. Lyse cells, then quantify in a fluorescence plate reader using dye included in the kit; 2. Lyse cells, then quantify alkaline phosphatase activity using reagents provided; or 3. Recover colonies from matrix for further culture or analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
PinPoint-FC 293T Platform Cell Line for Targeted Gene Insertion (with PinPoint site already placed)
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: Cell Biolabs? Collagen-based Contraction Assay Kit provides a simple system to assess cell contractivity in vitro and screen cell contraction mediators. Each kit provides sufficient quantities to perform up to 24 assays in a 24-well plate. The kit can be also used in culturing cells in 3D collagen matrix.
Description: Cell Biolabs? CytoSelect MTT Cell Proliferation Assay provides a colorimetric format for measuring and monitoring cell proliferation. The kit contains sufficient reagents for the evaluation of 960 assays in 96-well plates or 192 assays in 24-well plates. Cells can be plated and then treated with compounds or agents that affect proliferation. Cells are then detected with the proliferation reagent, which is converted in live cells from the yellow tetrazole MTT to the purple formazan form by a cellular reductase (Figure 1). An increase in cell proliferation is accompanied by an increased signal, while a decrease in cell proliferation (and signal) can indicate the toxic effects of compounds or suboptimal culture conditions. The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues. This cell proliferation reagent can be used to detect proliferation in bacteria, yeast, fungi, protozoa as well as cultured mammalian and piscine cells.
Description: The CRISPR/Cas9 Kinase Knockout Lentivirus Library (Array Format) targets 619 human kinases and pseudo-kinases.bpsbioscience.com/media/wysiwyg/Kinases/Kinase_Library_-_List_Kinases_Pseudokinases_06-15-2022.xlsx Download the table to view all available kinases. The Array consists of a series of vials, with each vial containing a mixture of integrating CRISPR/Cas9 lentiviral particles targeting 5 sgRNAs for a specific gene (1 vial per gene, 5 sgRNAs per gene). The Array also includes a total of 150 control sgRNAs that do not target any gene (combined into 30 vials containing 5 control sgRNAs per vial). Thus, the Array contains a total of 649 vials and 3,245 sgRNAs.The lentiviruses are replication incompetent, VSV-G pseudotyped lentiviral particles ready to infect almost all types of mammalian cells, including primary and non-dividing cells. The SIN (self-inactivation) lentiviral backbone contains the Cas9 gene (Streptococcus pyogenes CRISPR associated protein 9) driven by an EF1a promoter, an sgRNA driven by a U6 promoter, and a puromycin selection marker.The lentiviruses integrate randomly into the cellular genome to express both Cas9 and the sgRNAs. Because the lentiviruses contain Cas9, they can be used in any target cell regardless of whether the cells already express Cas9. Puromycin selection ensures high expression of both Cas9 and the sgRNAs. Knockout efficiencies will depend on the cell type and the gene of interest. Stable CRISPR/Cas9 knockout cell lines can also be generated following limiting dilution.The library is delivered with a User Manual booklet.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: Cell Biolabs? HIF-1 Cell Based ELISA Kit is an immunoassay developed for rapid detection of HIF-1 Alpha in fixed cells. Cells on a microplate are stimulated for HIF-1 Alpha stabilization, fixed, permeabilized, and then neutralized in the well. HIF-1 Alpha is then detected with an anti-HIF-1 alpha antibody followed by an HRP conjugated secondary antibody. Each kit provides sufficient reagents to perform up to a total of 96 assays and can detect HIF-1 Alpha from human, mouse, or rat.
Cas13a (CRISPR Associated Protein 13a, C2c2) ELISA Kit
Description: The CytoSelect BrdU Cell Proliferation ELISA Kit detects BrdU incorporated into cellular DNA during cell proliferation using an anti-BrdU antibody. When cells are incubated in media containing BrdU, the pyrimidine analog is incorporated in place of thymidine into the newly synthesized DNA of proliferating cells. Once the labeling media is removed, the cells are fixed and the DNA is denatured in one step with a fix/denature solution (denaturation of the DNA is necessary to improve the accessibility of the incorporated BrdU for detection). Then an anti-BrdU mouse monoclonal antibody is added followed by an HRP conjugated secondary antibody to detect the incorporated BrdU. The magnitude of the absorbance for the developed color is proportional to the quantity of BrdU incorporated into cells and can be directly correlated to cell proliferation.
pGreenFire 2.0 TCF/LEF clonal 293T reporter cell line (pGF2-TCF/LEF-rFluc-T2A-GFP-mPGK-Puro)
Description: Our CytoSelect 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.
Description: Our CytoSelect 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect 96-Well Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 96-well plates on a fluorescence plate reader. Inserts are precoated on the top of the membrane with Basement Membrane, an ECM protein mix isolated from EHS tumor cells.
Description: The CytoSelect Cell Viability and Cytotoxicity Assay Kit provides a simple format for monitoring cell viability via metabolic activity. Live cells are detected with either MTT (colorimetric detection) or Calcein AM (fluorometric detection). Dead cells are detected by EthD-1 reagent (fluorometric). All 3 detection reagents are included, along with Saponin (a cell death initiator). Prior to the assay, cells may be treated with compounds or agents that affect cell viability. This kit is suitable for eukaryotic cells, not yeast or bacteria.
Description: CytoSelect 24-Well Cell Co-Culture System provides a unique platform to monitor direct contact between two cell types in a single well. First, cells are cultured until they form a monolayer around the insert, creating a defined 8 mm cell-free zone. Once the insert is removed, a second cell type may be seeded into the exposed zone. The kit contains proprietary treated inserts and sufficient reagents for the evaluation of 24 samples. The inserts are compatible with most adherent cell types and experimental conditions.
Description: CytoSelect 24-Well Cell Co-Culture System provides a unique platform to monitor direct contact between two cell types in a single well. First, cells are cultured until they form a monolayer around the insert, creating a defined 8 mm cell-free zone. Once the insert is removed, a second cell type may be seeded into the exposed zone. The kit contains proprietary treated inserts and sufficient reagents for the evaluation of 24 samples. The inserts are compatible with most adherent cell types and experimental conditions.
Description: Cell Biolabs? Cell Contraction Assays (Floating Matrix Model) provide a simple, in vitro system to assess cell contractivity and screen cell contraction mediators. The proprietary Cell Contraction Plate eliminates the matrix releasing step of the conventional contraction assay, providing a faster, higher-throughput method to assess cell contraction.
Description: Cell Biolabs? CytoSelect Cell Proliferation Assay Reagent (Fluorometric) provides a fluorometric format for measuring and monitoring cell proliferation. Cells can be plated and then treated with compounds or agents that affect proliferation. Cells are then incubated with the proliferation reagent. Upon entering metabolically active live cells, the non-fluorescent proliferation reagent is converted into a bright red fluorescent form. An increase in cell proliferation is accompanied by increased fluorescent signal, while a decrease in cell proliferation (and signal) can indicate the toxic effects of compounds or suboptimal culture conditions. The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues. This cell proliferation reagent can be used to detect proliferation in bacteria, yeast, fungi, protozoa as well as cultured mammalian and piscine cells. The kit contains sufficient reagents for the evaluation of 960 assays in ten 96-well plates or 192 assays in eight 24-well plates.
Description: Cell Biolabs? CytoSelect WST-1 Cell Proliferation Assay Reagent provides a colorimetric format for measuring and monitoring cell proliferation. The 10 mL volume is sufficient for the evaluation of 960 assays in ten 96-well plates or 192 assays in eight 24-well plates. Cells can be plated and then treated with compounds or agents that affect proliferation. Cells are then detected with the proliferation reagent, which is converted in live cells from WST-1 to the formazan form in the presence of cellular NADH and an electron mediator. An increase in cell proliferation is accompanied by increased signal, while a decrease in cell proliferation (and signal) can indicate the toxic effects of compounds or suboptimal culture conditions. The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues. This cell proliferation reagent can be used to detect proliferation in bacteria, yeast, fungi, protozoa as well as cultured mammalian and piscine cells.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Laminin.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: Our CytoSelect 384-Well Cell Transformation Assay uses a modified soft agar 3D matrix to support the formation of colonies by neoplastic cells. Quantitation of cell transformation is performed on a fluorescence plate reader.
Description: Our CytoSelect 384-Well Cell Transformation Assay uses a modified soft agar 3D matrix to support the formation of colonies by neoplastic cells. Quantitation of cell transformation is performed on a fluorescence plate reader.
StemTAG PCR Primer Set for Stem Cell Characterization
Description: StemTAG PCR Primer Set for Stem Cell Characterization includes 7 primer pairs: Oct-4, NANOG, AFP, Flk-1, and NCAM, plus GAPDH and beta-actin as controls.
Description: Phagocytosis can be assayed by measuring the engulfment of a cell "substrate". However, traditional assays require tedious cell counting under a microscope. Our CytoSelect 96-Well Phagocytosis Assay, Red Blood Cell Substrate provides a more accurate, user-friendly, high-throughput alternative to the standard phagocytosis assay. The assay may be adapted for use with 24-well or 48-well plates.
Description: Many solid tumors contain heterogeneous populations of normal and cancerous cells. Separation of these cell populations is key to an accurate assessment of the true genotypic and phenotypic differences between normal and tumor cells. Our CytoSelect Clonogenic Tumor Cell Isolation Kit uses a proprietary semisolid agar medium to facilitate formation of colonies by cells from solid tumors. Colonies are grown in either a 6-well plate or a 35mm culture dish. These colonies are isolated away from single (i.e. normal) cells by size filtration. The viable cells from these colonies can be easily recovered for further analysis.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: Cell Biolabs? CytoSelect Proliferating Cell Nuclear Antigen (PCNA) ELISA Kit is an enzyme immunoassay developed for the detection and quantitation of PCNA from nuclear and whole cell extracts. The kit detects PCNA from mouse, rat and human, and has a detection sensitivity limit of 12.5 ng/mLPCNA. Each kit provides sufficient reagents to perform up to 96 assays including standard curve and unknown samples.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Laminin.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Laminin.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Laminin.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect 96-Well Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 96-well plates on a fluorescence plate reader. Inserts are precoated on the top of the membrane with Laminin.
Radius 24-Well Cell Migration Assay, (Collagen I Coated)
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect 96-Well Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 96-well plates on a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibrinogen.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibrinogen.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibronectin.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibronectin.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
×
Specyficzna rekrutacja regulatorowych limfocytów T w raku jajnika sprzyja przywilejowi immunologicznemu i pozwala przewidzieć skrócenie czasu przeżycia.
Regulatory T (T(reg)) cells mediate homeostatic peripheral tolerance by suppressing autoreactive T cells. Failure of host antitumor immunity could also be brought on by exaggerated suppression of tumor-associated antigen-reactive lymphocytes mediated by T(reg) cells; nevertheless, definitive proof that T(reg) cells have an immunopathological function in human most cancers is missing. Right here we present, in detailed research of CD4(+)CD25(+)FOXP3(+) T(reg) cells in 104 people affected with ovarian carcinoma, that human tumor T(reg) cells suppress tumor-specific T cell immunity and contribute to development of human tumors in vivo.
We additionally present that tumor T(reg) cells are related to a excessive loss of life hazard and lowered survival. Human T(reg) cells preferentially transfer to and accumulate in tumors and ascites, however not often enter draining lymph nodes in later most cancers levels. Tumor cells and microenvironmental macrophages produce the chemokine CCL22, which mediates trafficking of T(reg) cells to the tumor. This particular recruitment of T(reg) cells represents a mechanism by which tumors could foster immune privilege. Thus, blocking T(reg) cell migration or perform could assist to defeat human most cancers.
Płynny mannequin mozaiki struktury błon komórkowych
A fluid mosaic mannequin is offered for the gross group and construction of the proteins and lipids of organic membranes. The mannequin is per the restrictions imposed by thermodynamics. On this mannequin, the proteins which are integral to the membrane are a heterogeneous set of globular molecules, every organized in an amphipathic construction, that’s, with the ionic and extremely polar teams protruding from the membrane into the aqueous part, and the nonpolar teams largely buried within the hydrophobic inside of the membrane. These globular molecules are partially embedded in a matrix of phospholipid. The majority of the phospholipid is organized as a discontinuous, fluid bilayer, though a small fraction of the lipid could work together particularly with the membrane proteins.
The fluid mosaic construction is due to this fact formally analogous to a two-dimensional oriented answer of integral proteins (or lipoproteins) within the viscous phospholipid bilayer solvent. Latest experiments with all kinds of techniqes and a number of other completely different membrane techniques are described, all of which abet per, and add a lot element to, the fluid mosaic mannequin. It due to this fact appears acceptable to recommend doable mechanisms for varied membrane features and membrane-mediated phenomena within the gentle of the mannequin. As examples, experimentally testable mechanisms are instructed for cell floor modifications in malignant transformation, and for cooperative results exhibited within the interactions of membranes with some particular ligands.
Observe added in proof: Since this text was written, we’ve obtained electron microscopic proof (69) that the concanavalin A binding websites on the membranes of SV40 virus-transformed mouse fibroblasts (3T3 cells) are extra clustered than the websites on the membranes of regular cells, as predicted by the speculation represented in Fig. 7B. T-here has additionally appeared a examine by Taylor et al. (70) displaying the outstanding results produced on lymphocytes by the addition of antibodies directed to their floor immunoglobulin molecules.
The antibodies induce a redistribution and pinocytosis of those floor immunoglobulins, in order that inside about 30 minutes at 37 levels C the floor immunoglobulins are fully swept out of the membrane. These results don’t happen, nevertheless, if the bivalent antibodies are changed by their univalent Fab fragments or if the antibody experiments are carried out at zero levels C as a substitute of 37 levels C. These and associated outcomes strongly point out that the bivalent antibodies produce an aggregation of the floor immunoglobulin molecules within the airplane of the membrane, which might happen provided that the immunoglobulin molecules are free to diffuse within the membrane. This aggregation then seems to spark off the pinocytosis of the membrane elements by some unknown mechanism. Such membrane transformations could also be of essential significance within the induction of an antibody response to an antigen, in addition to iv different processes of cell differentiation.
Przywracanie funkcji wyczerpanych limfocytów T CD8 podczas przewlekłej infekcji wirusowej
Useful impairment of antigen-specific T cells is a defining attribute of many continual infections, however the underlying mechanisms of T-cell dysfunction aren’t properly understood. To handle this query, we analysed genes expressed in functionally impaired virus-specific CD8 T cells current in mice chronically contaminated with lymphocytic choriomeningitis virus (LCMV), and in contrast these with the gene profile of purposeful reminiscence CD8 T cells. Right here we report that PD-1 (programmed loss of life 1; also called Pdcd1) was selectively upregulated by the exhausted T cells, and that in vivo administration of antibodies that blocked the interplay of this inhibitory receptor with its ligand, PD-L1 (also called B7-H1), enhanced T-cell responses.
Notably, we discovered that even in persistently contaminated mice that have been missing CD4 T-cell assist, blockade of the PD-1/PD-L1 inhibitory pathway had a useful impact on the ‘helpless’ CD8 T cells, restoring their capacity to bear proliferation, secrete cytokines, kill contaminated cells and reduce viral load. Blockade of the CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) inhibitory pathway had no impact on both T-cell perform or viral management. These research establish a selected mechanism of T-cell exhaustion and outline a probably efficient immunological technique for the therapy of continual viral infections.
Description: The TCR Knockout Jurkat cell line was generated by CRISPR/Cas9 genome editing to remove the TRAC (T-Cell Receptor Alpha Constant) and TRBC1 (T-Cell Receptor Beta Constant 1) domains of the TCRα and β chains.
Description: This cell line is a double knockout of TCR (T Cell Receptor) and B2M (Beta-2-Microglobulin). First, the TRAC (T-Cell Receptor Alpha Constant) and the TRBC1 (T-Cell Receptor Beta Constant 1) domains of the TCRα/β chains were genetically removed by CRISPR/Cas9 genome editing from Jurkat cells to generate the TCR Knockout Jurkat cell Line (BPS Bioscience #78539). These TCR knockout cells were then used to generate a new cell line in which B2M was also genetically removed by CRISPR/Cas9 genome editing.
Description: The 293AD Cell Line is derived from the parental 293 cells but selected for attributes that increase adenovirus production, including firmer attachment and larger surface area.
Description: The 293AAV Cell Line is derived from the parental 293 cells but selected for attributes that increase AAV production, including firmer attachment and larger surface area.
Description: The 293LTV Cell Line is derived from the parental 293 cells but selected for attributes that increase lentiviral production, including fimrer attachment and larger surface area.
Description: The 293RTV Cell Line is derived from the parental 293 cells but selected for attributes that increase retroviral production, including fimrer attachment and larger surface area.
Description: The FCGR2A Knockout Jurkat cell line was generated by CRISPR/Cas9 genome editing to remove FCGR2A (CD32A), the gene encoding protein FcγRIIa (Fragment crystallizable gamma receptor II a, also known as FcGRIIa, Fc-gamma-RIIa, and CD32A).
Description: This cell lysate is prepared from human 293T using Boster's RIPA Lysis Buffer (AR0105) using a standard whole cell lysate protocol. The concentration was determined using the BCA assay process and then diluted using Dithiothreitol (DTT) and a reducing SDS sample loading buffer, heated for 5 minutes at 100˚C.
Description: Both B2M (Beta-2-Microglobulin) and CIITA (Class II Transactivator) have been genetically removed from THP-1 cells using CRISPR/Cas9 genome editing.
Description: B2M (Beta-2-Microglobulin) has been genetically removed by CRISPR/Cas9 genome editing from NFAT Luciferase Reporter Jurkat cells. Expression of the firefly luciferase gene is driven by NFAT response elements located upstream of the minimal TATA promoter. Activation of the NFAT signaling pathway in these cells can be monitored by measuring luciferase activity.
TCR Knockout NFAT-Luciferase Reporter Jurkat Cell Line
Description: This cell line is a knockout of TCR (T Cell Receptor). The TRAC (T-Cell Receptor Alpha Constant) and TRBC1 (T-Cell Receptor Beta Constant 1) domains of the TCRα/β chains were genetically removed by CRISPR/Cas9 genome editing from recombinant Jurkat cells stably expressing the firefly luciferase gene under the control of NFAT response elements.This cell line has been functionally validated and does not respond to anti-CD3 agonist antibodies, as opposed to parental NFAT-Luciferase Reporter Jurkat cells (BPS Bioscience #60621).
Description: This cell line is a double knockout of TCR (T Cell Receptor) and B2M (Beta-2-Microglobulin). First, the TRAC (T-Cell Receptor Alpha Constant) and the TRBC1 (T-Cell Receptor Beta Constant 1) domains of the TCRα/β chains were genetically removed by CRISPR/Cas9 genome editing from NFAT Luciferase Reporter Jurkat cells to generate the TCR Knockout NFAT Luciferase Reporter Jurkat cell Line (BPS Bioscience #78556). These TCR knockout cells were used to generate a new cell line in which B2M was also genetically removed by CRISPR/Cas9 genome editing. _x000D_Expression of the firefly luciferase gene is driven by NFAT response elements located upstream of the minimal TATA promoter. Activation of the NFAT signaling pathway in these cells can be monitored by measuring luciferase activity.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-E cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-GP cells contain the gag and pol genes required for retroviral packaging; an expression vector is co-transfected with a VSVG envelope vector.
Description: Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells. The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-A cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.
Total Protein - Murine Embryonic Stem Cell Line D3
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: Our StemTAG 96-Well Stem Cell Colony Formation Assay provides a high-throughput method to quantify ES cells in just 7-10 days, and no manual cell counting is required. Once colonies are formed, they may be analyzed in three different ways: 1. Lyse cells, then quantify in a fluorescence plate reader using dye included in the kit; 2. Lyse cells, then quantify alkaline phosphatase activity using reagents provided; or 3. Recover colonies from matrix for further culture or analysis.
Description: Our StemTAG 96-Well Stem Cell Colony Formation Assay provides a high-throughput method to quantify ES cells in just 7-10 days, and no manual cell counting is required. Once colonies are formed, they may be analyzed in three different ways: 1. Lyse cells, then quantify in a fluorescence plate reader using dye included in the kit; 2. Lyse cells, then quantify alkaline phosphatase activity using reagents provided; or 3. Recover colonies from matrix for further culture or analysis.
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
PinPoint-FC 293T Platform Cell Line for Targeted Gene Insertion (with PinPoint site already placed)
Description: CytoSelect 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.
Description: Cell Biolabs? Collagen-based Contraction Assay Kit provides a simple system to assess cell contractivity in vitro and screen cell contraction mediators. Each kit provides sufficient quantities to perform up to 24 assays in a 24-well plate. The kit can be also used in culturing cells in 3D collagen matrix.
Description: Cell Biolabs? CytoSelect MTT Cell Proliferation Assay provides a colorimetric format for measuring and monitoring cell proliferation. The kit contains sufficient reagents for the evaluation of 960 assays in 96-well plates or 192 assays in 24-well plates. Cells can be plated and then treated with compounds or agents that affect proliferation. Cells are then detected with the proliferation reagent, which is converted in live cells from the yellow tetrazole MTT to the purple formazan form by a cellular reductase (Figure 1). An increase in cell proliferation is accompanied by an increased signal, while a decrease in cell proliferation (and signal) can indicate the toxic effects of compounds or suboptimal culture conditions. The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues. This cell proliferation reagent can be used to detect proliferation in bacteria, yeast, fungi, protozoa as well as cultured mammalian and piscine cells.
Description: The CRISPR/Cas9 Kinase Knockout Lentivirus Library (Array Format) targets 619 human kinases and pseudo-kinases.bpsbioscience.com/media/wysiwyg/Kinases/Kinase_Library_-_List_Kinases_Pseudokinases_06-15-2022.xlsx Download the table to view all available kinases. The Array consists of a series of vials, with each vial containing a mixture of integrating CRISPR/Cas9 lentiviral particles targeting 5 sgRNAs for a specific gene (1 vial per gene, 5 sgRNAs per gene). The Array also includes a total of 150 control sgRNAs that do not target any gene (combined into 30 vials containing 5 control sgRNAs per vial). Thus, the Array contains a total of 649 vials and 3,245 sgRNAs.The lentiviruses are replication incompetent, VSV-G pseudotyped lentiviral particles ready to infect almost all types of mammalian cells, including primary and non-dividing cells. The SIN (self-inactivation) lentiviral backbone contains the Cas9 gene (Streptococcus pyogenes CRISPR associated protein 9) driven by an EF1a promoter, an sgRNA driven by a U6 promoter, and a puromycin selection marker.The lentiviruses integrate randomly into the cellular genome to express both Cas9 and the sgRNAs. Because the lentiviruses contain Cas9, they can be used in any target cell regardless of whether the cells already express Cas9. Puromycin selection ensures high expression of both Cas9 and the sgRNAs. Knockout efficiencies will depend on the cell type and the gene of interest. Stable CRISPR/Cas9 knockout cell lines can also be generated following limiting dilution.The library is delivered with a User Manual booklet.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: Cell Biolabs? HIF-1 Cell Based ELISA Kit is an immunoassay developed for rapid detection of HIF-1 Alpha in fixed cells. Cells on a microplate are stimulated for HIF-1 Alpha stabilization, fixed, permeabilized, and then neutralized in the well. HIF-1 Alpha is then detected with an anti-HIF-1 alpha antibody followed by an HRP conjugated secondary antibody. Each kit provides sufficient reagents to perform up to a total of 96 assays and can detect HIF-1 Alpha from human, mouse, or rat.
Cas13a (CRISPR Associated Protein 13a, C2c2) ELISA Kit
Description: Description of target: Granzyme A is a protein that in humans is encoded by the GZMA gene. Cytolytic T lymphocytes (CTL) and natural killer (NK) cells share the remarkable ability to recognize, bind, and lyse specific target cells. They are thought to protect their host by lysing cells bearing on their surface "nonself" antigens, usually peptides or proteins resulting from infection by intracellular pathogens. The protein described here is a T cell- and natural killer cell-specific serine protease that may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells. GZMA induces caspase-independent apoptosis in a characteristic manner, except it causes a distinctive form of DNA damage: single-stranded DNA nicking. A target of GZMA is the SET complex, including HMGB2 and ANP32A.;Species reactivity: Human;Application: ELISA;Assay info: ;Sensitivity: <10pg/ml
Description: Description of target: Cytolytic T lymphocytes (CTL) and natural killer (NK) cells share the remarkable ability to recognize, bind, and lyse specific target cells. They are thought to protect their host by lysing cells bearing on their surface 'nonself' antigens, usually peptides or proteins resulting from infection by intracellular pathogens. The protein described here is a T cell- and natural killer cell-specific serine protease that may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells.;Species reactivity: Human;Application: ELISA;Assay info: Assay Methodology: Quantitative Sandwich ELISA;Sensitivity: 0.055 ng/mL
Description: Description of target: Cytolytic T lymphocytes (CTL) and natural killer (NK) cells share the remarkable ability to recognize, bind, and lyse specific target cells. They are thought to protect their host by lysing cells bearing on their surface 'nonself' antigens, usually peptides or proteins resulting from infection by intracellular pathogens. The protein described here is a T cell- and natural killer cell-specific serine protease that may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells. Cytolytic T lymphocytes (CTL) and natural killer (NK) cells share the remarkable ability to recognize, bind, and lyse specific target cells. They are thought to protect their host by lysing cells bearing on their surface 'nonself' antigens, usually peptides or proteins resulting from infection by intracellular pathogens. The protein described here is a T cell- and natural killer cell-specific serine protease that may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.;Species reactivity: Human;Application: ELISA;Assay info: ;Sensitivity: < 5.7pg/mL
Description: Description of target: Cytolytic T lymphocytes (CTL) and natural killer (NK) cells share the remarkable ability to recognize, bind, and lyse specific target cells. They are thought to protect their host by lysing cells bearing on their surface 'nonself' antigens, usually peptides or proteins resulting from infection by intracellular pathogens. The protein described here is a T cell- and natural killer cell-specific serine protease that may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells. Cytolytic T lymphocytes (CTL) and natural killer (NK) cells share the remarkable ability to recognize, bind, and lyse specific target cells. They are thought to protect their host by lysing cells bearing on their surface 'nonself' antigens, usually peptides or proteins resulting from infection by intracellular pathogens. The protein described here is a T cell- and natural killer cell-specific serine protease that may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.;Species reactivity: Human;Application: ELISA;Assay info: ;Sensitivity: < 0.055ng/mL
Description: The CytoSelect BrdU Cell Proliferation ELISA Kit detects BrdU incorporated into cellular DNA during cell proliferation using an anti-BrdU antibody. When cells are incubated in media containing BrdU, the pyrimidine analog is incorporated in place of thymidine into the newly synthesized DNA of proliferating cells. Once the labeling media is removed, the cells are fixed and the DNA is denatured in one step with a fix/denature solution (denaturation of the DNA is necessary to improve the accessibility of the incorporated BrdU for detection). Then an anti-BrdU mouse monoclonal antibody is added followed by an HRP conjugated secondary antibody to detect the incorporated BrdU. The magnitude of the absorbance for the developed color is proportional to the quantity of BrdU incorporated into cells and can be directly correlated to cell proliferation.
pGreenFire 2.0 TCF/LEF clonal 293T reporter cell line (pGF2-TCF/LEF-rFluc-T2A-GFP-mPGK-Puro)
Description: Our CytoSelect 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.
Description: Our CytoSelect 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect 96-Well Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 96-well plates on a fluorescence plate reader. Inserts are precoated on the top of the membrane with Basement Membrane, an ECM protein mix isolated from EHS tumor cells.
Description: The CytoSelect Cell Viability and Cytotoxicity Assay Kit provides a simple format for monitoring cell viability via metabolic activity. Live cells are detected with either MTT (colorimetric detection) or Calcein AM (fluorometric detection). Dead cells are detected by EthD-1 reagent (fluorometric). All 3 detection reagents are included, along with Saponin (a cell death initiator). Prior to the assay, cells may be treated with compounds or agents that affect cell viability. This kit is suitable for eukaryotic cells, not yeast or bacteria.
Description: CytoSelect 24-Well Cell Co-Culture System provides a unique platform to monitor direct contact between two cell types in a single well. First, cells are cultured until they form a monolayer around the insert, creating a defined 8 mm cell-free zone. Once the insert is removed, a second cell type may be seeded into the exposed zone. The kit contains proprietary treated inserts and sufficient reagents for the evaluation of 24 samples. The inserts are compatible with most adherent cell types and experimental conditions.
Description: CytoSelect 24-Well Cell Co-Culture System provides a unique platform to monitor direct contact between two cell types in a single well. First, cells are cultured until they form a monolayer around the insert, creating a defined 8 mm cell-free zone. Once the insert is removed, a second cell type may be seeded into the exposed zone. The kit contains proprietary treated inserts and sufficient reagents for the evaluation of 24 samples. The inserts are compatible with most adherent cell types and experimental conditions.
Description: Cell Biolabs? Cell Contraction Assays (Floating Matrix Model) provide a simple, in vitro system to assess cell contractivity and screen cell contraction mediators. The proprietary Cell Contraction Plate eliminates the matrix releasing step of the conventional contraction assay, providing a faster, higher-throughput method to assess cell contraction.
Description: Cell Biolabs? CytoSelect Cell Proliferation Assay Reagent (Fluorometric) provides a fluorometric format for measuring and monitoring cell proliferation. Cells can be plated and then treated with compounds or agents that affect proliferation. Cells are then incubated with the proliferation reagent. Upon entering metabolically active live cells, the non-fluorescent proliferation reagent is converted into a bright red fluorescent form. An increase in cell proliferation is accompanied by increased fluorescent signal, while a decrease in cell proliferation (and signal) can indicate the toxic effects of compounds or suboptimal culture conditions. The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues. This cell proliferation reagent can be used to detect proliferation in bacteria, yeast, fungi, protozoa as well as cultured mammalian and piscine cells. The kit contains sufficient reagents for the evaluation of 960 assays in ten 96-well plates or 192 assays in eight 24-well plates.
Description: Cell Biolabs? CytoSelect WST-1 Cell Proliferation Assay Reagent provides a colorimetric format for measuring and monitoring cell proliferation. The 10 mL volume is sufficient for the evaluation of 960 assays in ten 96-well plates or 192 assays in eight 24-well plates. Cells can be plated and then treated with compounds or agents that affect proliferation. Cells are then detected with the proliferation reagent, which is converted in live cells from WST-1 to the formazan form in the presence of cellular NADH and an electron mediator. An increase in cell proliferation is accompanied by increased signal, while a decrease in cell proliferation (and signal) can indicate the toxic effects of compounds or suboptimal culture conditions. The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues. This cell proliferation reagent can be used to detect proliferation in bacteria, yeast, fungi, protozoa as well as cultured mammalian and piscine cells.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Laminin.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: Our CytoSelect 384-Well Cell Transformation Assay uses a modified soft agar 3D matrix to support the formation of colonies by neoplastic cells. Quantitation of cell transformation is performed on a fluorescence plate reader.
Description: Our CytoSelect 384-Well Cell Transformation Assay uses a modified soft agar 3D matrix to support the formation of colonies by neoplastic cells. Quantitation of cell transformation is performed on a fluorescence plate reader.
StemTAG PCR Primer Set for Stem Cell Characterization
Description: StemTAG PCR Primer Set for Stem Cell Characterization includes 7 primer pairs: Oct-4, NANOG, AFP, Flk-1, and NCAM, plus GAPDH and beta-actin as controls.
Description: Phagocytosis can be assayed by measuring the engulfment of a cell "substrate". However, traditional assays require tedious cell counting under a microscope. Our CytoSelect 96-Well Phagocytosis Assay, Red Blood Cell Substrate provides a more accurate, user-friendly, high-throughput alternative to the standard phagocytosis assay. The assay may be adapted for use with 24-well or 48-well plates.
Description: Many solid tumors contain heterogeneous populations of normal and cancerous cells. Separation of these cell populations is key to an accurate assessment of the true genotypic and phenotypic differences between normal and tumor cells. Our CytoSelect Clonogenic Tumor Cell Isolation Kit uses a proprietary semisolid agar medium to facilitate formation of colonies by cells from solid tumors. Colonies are grown in either a 6-well plate or a 35mm culture dish. These colonies are isolated away from single (i.e. normal) cells by size filtration. The viable cells from these colonies can be easily recovered for further analysis.
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: A polyclonal antibody against GZMA. Recognizes GZMA from Human. This antibody is Unconjugated. Tested in the following application: IHC, IF, ELISA;IHC:1/100-1/300.IF:1/200-1/1000.ELISA:1/5000
Description: A polyclonal antibody against GZMA. Recognizes GZMA from Human. This antibody is Unconjugated. Tested in the following application: ELISA, IHC; Recommended dilution: IHC:1:20-1:200
Description: A polyclonal antibody against GZMA. Recognizes GZMA from Human. This antibody is Unconjugated. Tested in the following application: ELISA, WB, IHC
Description: A polyclonal antibody against Gzma. Recognizes Gzma from Human, Mouse. This antibody is Unconjugated. Tested in the following application: ELISA, WB; Recommended dilution: WB:1:500-1:5000
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: Cell Biolabs? CytoSelect Proliferating Cell Nuclear Antigen (PCNA) ELISA Kit is an enzyme immunoassay developed for the detection and quantitation of PCNA from nuclear and whole cell extracts. The kit detects PCNA from mouse, rat and human, and has a detection sensitivity limit of 12.5 ng/mLPCNA. Each kit provides sufficient reagents to perform up to 96 assays including standard curve and unknown samples.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Laminin.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Laminin.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Laminin.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect 96-Well Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 96-well plates on a fluorescence plate reader. Inserts are precoated on the top of the membrane with Laminin.
Radius 24-Well Cell Migration Assay, (Collagen I Coated)
Description: The Radius Cell Migration Assay provides a unique alternative to conventional cell migration assays using the Boyden chamber. Unlike Boyden chamber assays which may only be analyzed at endpoint, the Radius assay uses a proprietary cell culture plate containing a carefully-defined biocompatible hydrogel (Radius gel) spot centralized at the bottom of each well. When cells are seeded in the well, they will attach everywhere except on the Radius gel, creating a cell-free zone. Following cell seeding the Radius gel is removed, allowing migratory cells to move across the area and close the gap.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.
Description: The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis. Our CytoSelect 96-Well Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 96-well plates on a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibrinogen.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibrinogen.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibronectin.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Fibronectin.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 3 µm pore size is best for the smallest cells including neutrophils and other leukocytes.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their environment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their enviroment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 12 µm pore size is suitable for astrocytes and other large or slow-moving cells.
Description: Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their enviroment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases. CytoSelect Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 12 µm pore size is suitable for astrocytes and other large or slow-moving cells.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with your choice of single ECM protein in each of the first 5 rows, with the last row provided as a negative control.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with your choice of single ECM protein in each of the first 5 rows, with the last row provided as a negative control.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with your choice of single ECM protein in each of the first 5 rows, with the last row provided as a negative control.
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with your choice of single ECM protein in each of the first 5 rows, with the last row provided as a negative control.
CytoSelect 48-well Cell Adhesion Assay (Collagen I, Colorimetric)
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Collagen I.
CytoSelect 48-well Cell Adhesion Assay (Collagen I, Fluorometric)
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Collagen I.
CytoSelect 48-well Cell Adhesion Assay (Collagen IV, Colorimetric)
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Collagen IV.
CytoSelect 48-well Cell Adhesion Assay (Collagen IV, Fluorometric)
Description: Cell adhesion is a complex process involved in migration/invasion, embryogenesis, wound healing and tissue remodeling. Cells adhere to the extracellular matrix, forming complexes with cytoskeleton components that can affect cell motility, differentiation, proliferation, and survival. Our CytoSelect 48-Well Cell Adhesion Assays provide a fully quantitative method for the evaluation of cell adhesion. The 48-well plate is precoated with Collagen IV.
Description: A sandwich quantitative ELISA assay kit for detection of Human Granzyme A (GZMA) in samples from serum, plasma, tissue homogenates, cell lysates, cell culture supernates or other biological fluids.
Description: A sandwich quantitative ELISA assay kit for detection of Human Granzyme A (GZMA) in samples from serum, plasma, tissue homogenates, cell lysates, cell culture supernates or other biological fluids.
Description: Quantitativesandwich ELISA kit for measuring Human granzyme A (GZMA) in samples from serum, plasma, cell culture supernates, tissue homogenates. A new trial version of the kit, which allows you to test the kit in your application at a reasonable price.
Description: Quantitativesandwich ELISA kit for measuring Human granzyme A (GZMA) in samples from serum, plasma, cell culture supernates, tissue homogenates. Now available in a cost efficient pack of 5 plates of 96 wells each, conveniently packed along with the other reagents in 5 separate kits.
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Granzyme A (GZMA) in serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids.
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Granzyme A (GZMA) in serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids.
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Granzyme A (GZMA) in serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids.
Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Granzyme A (GZMA) in serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids.
Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Human Granzyme A (GZMA) in samples from serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids with no significant corss-reactivity with analogues from other species.